
compartmentalization of components within the

cell, and with temporal profiles of activation, to

obtain a more comprehensive picture of the

functional organization of a cell. Still, distance in

chemical space (i.e., number of links between

two distal nodes) is likely to be a major deter-

minant of information processing that regulates

phenotypic behavior.

The maps for individual ligands or cellular

machines show distinct patterns of motifs. Com-

binations of ligands will likely produce many

more patterns of connectivity. Thus, a cellular

system may not be a single network but rather an

ensemble of network configurations that are

evoked by the stimuli-induced activation of var-

ious parts of the system. Identifying these network

configurations and the functions they evoke is

likely to provide more complete descriptions of

how molecular interactions lead to cellular

choices between homeostasis and plasticity.
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Containing Pandemic Influenza
at the Source

Ira M. Longini Jr.,1* Azhar Nizam,1 Shufu Xu,1

Kumnuan Ungchusak,2 Wanna Hanshaoworakul,2

Derek A. T. Cummings,3 M. Elizabeth Halloran1

Highly pathogenic avian influenza A (subtype H5N1) is threatening to cause a
human pandemic of potentially devastating proportions. We used a stochastic
influenza simulation model for rural Southeast Asia to investigate the ef-
fectiveness of targeted antiviral prophylaxis, quarantine, and pre-vaccination
in containing an emerging influenza strain at the source. If the basic
reproductive number (R0) was below 1.60, our simulations showed that a
prepared response with targeted antivirals would have a high probability of
containing the disease. In that case, an antiviral agent stockpile on the order
of 100,000 to 1 million courses for treatment and prophylaxis would be
sufficient. If pre-vaccination occurred, then targeted antiviral prophylaxis
could be effective for containing strains with an R0 as high as 2.1.
Combinations of targeted antiviral prophylaxis, pre-vaccination, and quaran-
tine could contain strains with an R0 as high as 2.4.

The world may be on the brink of an influenza

pandemic (1–4). Avian influenza A (subtype

H5N1) is causing widespread outbreaks among

poultry in Southeast (SE) Asia, with sporadic

transmission from birds to humans (5) and

limited probable human-to-human transmission

(6). Should an avian virus reassort with a

human virus, such as influenza A subtype

H3N2, within a dually infected human host or

reassort in a nonhuman mammalian species, or

if mutation of the virus occurs, the resulting new

variant could be capable of sustained human-to-

human transmission. The outbreak among

humans would then spread worldwide via the

global transportation network more rapidly than

adequate supplies of vaccine matched to the

new variant could be manufactured and distrib-

uted (1, 7). The pressing public health questions

are whether and how we can contain the spread

of an emerging strain at the source or at least

slow the initial spread to give time for vaccine

development. We used a discrete-time sto-

chastic simulation model of influenza spread

within a structured geographically distributed

population of 500,000 people in SE Asia to

compare the effectiveness of various interven-

tion strategies against a new strain of influenza.

Here we examine the effectiveness of the tar-

geted use of influenza antiviral agents (8–12),

quarantine, and pre-vaccination with a poorly

matched, low-efficacy vaccine in containing the

spread of the disease at the source.

We used information about rural SE Asia

(13, 14) to construct the model population. Our

goal was to represent the contact connectivity

of a typical rural SE Asian population. The

model population of 500,000 people was

distributed across a space of 5625 km2, yielding

a density of 89/km2, which is approximately

the population density of rural SE Asia (13).

The 500,000 people were partitioned into 36

geographic localities. This model is an ex-

tension of a model used to simulate inter-

ventions against pandemic influenza in the

United States (12).

The model Esee the supporting online ma-

terial (SOM) for details^ represents the number

of close and casual contacts that a typical person

makes in the course of a day. The age and

household size distributions of the population

are based on the Thai 2000 census (13). Many of

the mixing group sizes and distributions are

based on a social network study of the Nang

Rong District in rural Thailand (14). We con-

structed the social network for contacts sufficient

to transmit influenza as a large set of connected

mixing groups. The close contact groups consist

of households, household clusters, preschool

groups, schools, and workplaces; and the casual

contact groups consist of other social settings

(such as markets, shops, and temples) and a

single regional 40-bed hospital. All people can
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mix in their households and within clusters of

households, whereas children mix in preschool

groups or schools according to their age and the

probability that they are still in school. Children

are assigned to schools across the geographic

space according to the Nang Rong study. Adults

mix in workplaces according to a distance func-

tion that distributes them across the geographic

space informed by the Nang Rong study and

national migration statistics (15, 16). One con-

cern for containment is that infected people

might leave the modeled 500,000-person rural

area. We estimate that the daily probability

that a person will leave (escape) the area is on

the order of 10j3 (15). The population struc-

ture and the resulting social network graphs

and statistics are given in the SOM.

The natural history of influenza (Fig. 1A)

has been relatively invariant over the past two

pandemics and during the interpandemic pe-

riod since 1968 (12, 17–20). Calibration of the

model requires information about both the

relative and absolute magnitudes of the age-

specific illness attack rates. Because of un-

certainty about the relative age-specific illness

attack rates for a future influenza pandemic

in SE Asia, we calibrated the epidemic to a

pattern that falls between two extremes. At

one extreme, children would have a much

higher illness attack rate than adults, the pat-

tern observed during the 1957–1958 A (sub-

type H2N2) Asian influenza pandemic in the

United States (17, 21, 22). At the other ex-

treme, all age groups would have roughly

the same illness attack rates, the pattern ob-

served during the 1968–1969 A (H3N2) Hong

Kong influenza pandemic in the United States

(17, 22–24). The pattern for interpandemic in-

fluenza in SE Asia appears to be more like the

A (H2N2) pattern (25). We used the pattern

shown in Fig. 1B.

The magnitude of the illness attack rates will

depend on the unknown transmissibility of the

new strain. The overall illness attack rate for the

past Asian and Hong Kong pandemics was about

33% in the first wave. We calibrated the model

with a target overall illness attack rate of 33%,

corresponding to a basic reproductive number

(R
0
) (the average number of secondary infec-

tions caused by a single typical infectious

individual in a completely susceptible popula-

tion) of 1.4 (see the SOM). By varying the per-

contact probability of infection in the model, we

alter the R
0
. Figure 1B shows the age-specific

attack rates at R
0

values ranging from 1.1 to 2.4.

For calibration to historical attack rates, influ-

enza was introduced by randomly assigning 12

initial infectives. We simulated the emergence

of a new influenza strain by introducing a single

randomly assigned infective.

Intervention is triggered by the first case (that

is, symptomatic infection), with a delay of 7, 14,

or 21 days to implementation. This delay can be

interpreted as a delay in recognition of illness, a

delay in implementation of intervention, initia-

tion of transmission by more than one initial in-

fection, or a combination of these three factors. A

sensitivity analysis considers delays up to 56

days (fig. S14). Once intervention begins, inter-

vention in additional localities is implemented

1 day after the first case in the affected locality.

Targeted antiviral prophylaxis (TAP) is

carried out by treating identified index cases

(the first symptomatic illness in a mixing group)

and offering prophylaxis only to the contacts

of these index cases in predefined close con-

tact groups (12); namely, households, neighbor-

hood clusters, preschool groups, schools, and

workplaces. Index cases are therapeutically

treated the day after the onset of illness, and

prophylaxis of contacts begins at the same

time, both being given a single course of

oseltamivir. A susceptible individual may re-

ceive subsequent courses if exposed to further

index cases. We assume that a certain percent,

varied in a sensitivity analysis, of household

(preschool) index cases could be ascertained

and that all their other household (preschool)

members would receive prophylaxis (fig. S11).

For index cases in a school or workplace, only

Fig. 1. Basic model parameter distributions. (A) Modeled
natural history of influenza. Newly infected people pass
through the latent state (mean, 1.2 days) and infectious state
(mean, 4.1 days), after which they recover with immunity or
die. We model the incubation period as slightly longer than
the latent period, so that people who are infected develop
influenza symptoms on average 1.9 days after infection if they
develop symptoms at all (17, 18). The probability distributions
of the latent, incubation, and infectious periods are shown.
We assume that 67% of infected people develop influenza
symptoms and 33% will be asymptomatic. We further assume
that asymptomatic people are half as infectious as those with
influenza symptoms. Additionally, this model allows for
people to withdraw from all of their mixing groups except
the family unit if they become ill. (B) Illness attack rates (the
final proportion that become ill) by age group and R0. (C) For
epidemics with no interventions, the probabilities of no cases,
a small epidemic with at least one secondary infected person
(e1 case per 1000), and a large epidemic (91 case per 1000),
as a function of R0. Also, the average number of cases per
1000 people for the latter two types of epidemics.
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a certain percent of the people in that mixing

group would receive prophylaxis. We used cur-

rent estimates of the antiviral efficacy (AVE)

of oseltamivir (26–29) (see the SOM).

The primary difficulty in TAP would be the

identification of index cases. Because TAP is

aimed at predefined close contact groups, the

identification of potential TAP recipients would

be less difficult than in classical contact tracing.

An alternative and less resource-intensive strat-

egy would be geographically targeted anti-

viral prophylaxis (GTAP), also known as ring

prophylaxis. In this strategy, once an influenza

case is identified in a locality, then a percent-

age, varied in a sensitivity analysis (fig. S12),

of people in an entire locality are given one

course of oseltamivir.

Household quarantine, like GTAP, is im-

plemented within localities. The first case in

a locality triggers a quarantine policy. Every

case and a certain percentage of susceptible

people restrict their movement to within their

household and their neighborhood cluster. Be-

cause quarantined people would have more

contact with their household and neighbor-

hood contacts, the contact probabilities within

households and household clusters are doubled

for quarantined people.

A human influenza A (H5N1) vaccine is

currently being tested (7) and may be available,

but could be poorly matched to the emerging

strain and thus be of low efficacy. For the model

scenarios that use vaccination, we assume that

pre-vaccination takes place long enough be-

fore the pandemic that vaccinated people can

develop immunity. We assume a low vaccine

efficacy for susceptibility (VE
S
) (30) of 0.30

and a vaccine efficacy for infectiousness (VE
I
)

of 0.50. We carried out a sensitivity analysis

on VE
I

(fig. S19).

We consider an epidemic to be contained if

there are fewer than 500 cases in the 500,000-

person community (e1 per 1000). The contain-

ment proportion is the proportion of simulations

in which the attack rate is e1 per 1000. Another

measure of how well we have contained the

epidemic is the number of infected people who

travel out of the 500,000-person community

over the course of the epidemic. If this number

is very low or even zero, we have effectively

contained spread at the source. The number of

cases per 1000 people in the population is

another measure of success of the intervention.

Given an initial person infected with the

newly emergent influenza strain, there are three

possible outcomes: (i) no further people are

infected; (ii) there is a small epidemic, between

1 and 500 total cases (e1 per 1000); or (iii) there

is a large epidemic (91 case per 1000 people).

The relative probabilities of these three out-

comes as well as the average size of a large

epidemic vary with R
0

(Fig. 1C).

Figure 2A shows a typical realization of a

large epidemic due to a single initial infective

at R
0
0 1.4, with no intervention, as well as the

average times for intervention initiation. On

average, the first symptomatic case appeared 4

days after the initial infection, with interven-

tion initiation times on average 11, 18, or 25

days after the initial infection. Figure 2B

shows a typical realization of an epidemic

contained with 90% GTAP. Movies 1 to 3 in

the SOM show the geographic spread of the

epidemic with and without intervention.

Figure 3 gives bar plots of the results for

the different intervention strategies and values

of R
0
. Table 1 gives numbers for the results for

R
0

values of 1.4 and 1.7. The measures of

containment did not vary much if intervention

was initiated 7, 14, or 21 days after the first

case, so we give results just for the 14-day

delay, followed by a sensitivity analysis of the

effect of further delay (fig. S14). When R
0
0

1.1, just above threshold, all of the interven-

tions work well. Both 80% TAP and 90%

GTAP would be effective in containing pan-

demic influenza at the source if R
0
e 1.4. If

R
0
Q 1.7, then neither 80% TAP nor 90%

GTAP is consistently effective in containing

the epidemic, and 300,000 to 350,000 courses

of oseltamivir would be needed. Thus, for these

interventions singly, a containment threshold

exists somewhere between R
0
0 1.4 and 1.7.

Further sensitivity analysis shows that the

containment threshold is roughly at R
0
0 1.6.
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Fig. 2. Model stochastic realizations. (A) A typical stochastically simulated large influenza epidemic
with no intervention and R0 0 1.4. Also shown are the main intervention initiation times considered
and the number of cases at those intervention times. (B) A typical stochastically simulated influenza
epidemic that is contained using 90% GTAP initiated 14 days after the first case, when R0 0 1.4.
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Pre-vaccination of the population with a low-

efficacy vaccine greatly enhances the effec-

tiveness of TAP and GTAP, even with just

50% coverage. With pre-vaccination, both 80%

TAP and 90% GTAP are effective at con-

taining the epidemic when R
0
0 1.7, but not

at higher levels of R
0
. Pre-vaccination es-

sentially lowers the reproductive number (31).

Local household quarantine is effective at

containing the epidemic if R
0
e 2.1 but is not

as effective at R
0
0 2.4. However, a com-

bination of 80% TAP plus quarantine is ef-

fective at an R
0

as high as 2.4, and adding

pre-vaccination makes TAP plus quarantine

even more effective.

We conducted a number of sensitivity

analyses of the effectiveness of the different

interventions at different levels of implementa-

tion and delay (figs. S11 to S18). We found that

at R
0
e 1.4, either TAP or GTAP alone is

effective only at the 70% level or higher. At

higher values of R
0
, household quarantine must

reach the 70% level to be effective. In terms of

timing of the intervention (fig. S14), 90%

GTAP and 80% TAP become less effective

when the intervention starts 28 days or more

after the detection of the first symptomatic

case, when there is an average of 85 cases

already. Quarantine at the 70% level becomes

less effective 42 days (average, 313 cases)
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Fig. 3. The effectiveness of the different interventions as compared to no
intervention started 14 days after the first case at different values of R0. The
interventions considered are 90% GTAP, 80% TAP, 80% TAP plus 50% pre-
vaccination of the population (80% TAP 50% Pre-Vac), 80% TAP plus 70%
pre-vaccination of the population (80% TAP 70% Pre-Vac), 70% household
and household cluster quarantine (70% Quar), 80% TAP with 70%
household and household cluster quarantine (80% TAP 70% Quar), and
80% TAP plus 50% pre-vaccination of the population with 70% household
and household cluster quarantine (80% TAP 50% Pre-Vac 70% Quar). (A)
Average number of cases per 1000 people with no intervention and with

different interventions. (B) Average containment proportion defined as
the proportion of epidemics with one or more secondary cases that had
500 or fewer cases in the population of 500,000 (or e1 case per 1000).
The ‘‘no intervention’’ entry gives the proportion of these epidemics that
had 500 or fewer cases with no intervention in the population of 500,000
(or e1 case per 1000). (C) Average number of infected people leaving the
500,000-person population. Each day, the number of infected people who
have not withdrawn to the home or are quarantined is multiplied by 10j3,
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(D) Average number of courses of oseltamivir used for the intervention.
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after detection of the first case, even with the

addition of TAP. All other interventions in

combination with pre-vaccination would be

fairly effective even 56 days (average, 894

cases) after the detection of the first case.

It may not be practical to get antiviral agents

to exposed people within 1 day of the index case

developing symptoms. We carried out a sensi-

tivity analysis for delays in initiation of TAP in

the close contact mixing groups ranging from 2

to 5 days after detection of an index case, with

80% TAP. With a delay of up to 2 days, sub-

stantial reduction in the number of cases is still

achieved, but with delays of 3 to 5 days, there is

less benefit (fig. S15). Sensitivity analysis on

antiviral efficacy (figs. S16 to S18) shows that

the effectiveness of TAP and GTAP is moder-

ately sensitive to variation in AVE
S

but not as

much to variation in antiviral efficacy in

preventing symptomatic disease if infected,

AVE
D

. Both AVE
S

and AVE
I

need to be 0.5

or higher for either TAP or GTAP to be

effective. Sensitivity analysis on VE
I

shows

that the effectiveness of 80% TAP with 70%

pre-vaccination is sensitive to variation in VE
I

(fig. S19). However, even at a level of VE
I

as

low as 0.1 (fig. S19), the epidemic is still well

contained.

We have shown that the targeted use of

antiviral agents, if implemented within 21 days

of the first case and if R
0
e 1.4, would have a

high probability of success for containing an

emergent influenza strain at the source in a

rural SE Asian population. Such interventions

would be effective for R
0

values as high as 1.7

in the presence of pre-vaccination with a low-

efficacy vaccine. For higher values of R
0
,

localized household quarantine would have to

be implemented, possibly in combination with

targeted antiviral prophylaxis to contain the

pandemic at the source. Although the R
0

of a

future newly emergent influenza strain is un-

known, previous estimates are 1.89 from the

first epidemic of pandemic A (H3N2) in Hong

Kong (19) and 2 to 3 for 1918 pandemic A

(H1N1) in the United States (32). However, a

newly emergent influenza strain may not yet

be well adapted to humans and could have an

R
0
G 2, and possibly just above 1. As the virus

adapts to human-to-human transmission, there

would probably be an incremental increase in

R
0

with each transmission event (33). This

makes early intervention especially important.

Based on the results here, the current World

Health Organization stockpile of 120,000 treat-

ment courses could possibly be sufficient to

contain a pandemic if the stockpile were de-

ployed at the source of the emerging strain

within 2 to 3 weeks of detection. Given that early

containment at the original source may fail or the

emergent strain may appear simultaneously in

several locations, up to 1 million courses could

be needed to deal with the multiple outbreak

foci. In addition, pre-vaccination of populations

at risk for a newly emergent influenza strain

would be prudent, even if the vaccine provided

only moderate protection. Although the effec-

tiveness of most interventions was fairly in-

variant to the timing of intervention initiation up

to 21 days after the first case, delay much

beyond that could allow the pandemic to spread

unless pre-vaccination takes place.

These results are probabilistic and demon-

strate considerable variability in the potential

size of the epidemic in the absence of and in

response to intervention (34). Public health

officials need to keep this probabilistic char-

acteristic of success in mind when planning

and evaluating their response. We have de-

veloped a flexible mathematical model that

can help determine the best intervention strat-

egies for containing pandemic influenza at

the source. Should a newly emergent influ-

enza strain appear, the model could be quickly

calibrated to data and intervention options

at the source of the epidemic. Data should be

provided from the field to estimate the value

of R
0
; the serial interval between cases; the

distributions of the latent, incubation, and in-

fectious periods; pathogenicity; case fatality

ratios; and secondary spread within important

mixing groups.
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Table 1. Simulated mean cases, escapes, courses, and containment proportion for various interventions
and no intervention in a typical rural population of 500,000 people in SE Asia.

Intervention
Cases per 1000 Escapes Courses

Containment
proportion

R0 0 1.4 R0 0 1.7 R0 0 1.4 R0 0 1.7 R0 0 1.4 R0 0 1.7 R0 0 1.4 R0 0 1.7

No intervention 211 384 686 1254 – – – –
80% TAP 0.13 149 0.43 525 1,042 381,273 0.98 0.33
90% GTAP 0.28 54 1 187 54,834 325,431 0.95 0.59
80% TAP þ 50%

pre-vaccination
0.02 0.16 0.06 0.67 87 1,338 1.00 0.98

80% TAP þ 70%
pre-vaccination

0.01 0.04 0.08 0.12 67 269 1.00 1.00

70% quarantine 0.17 1 0.72 3 - - 0.98 0.57
80% TAP þ

70% quarantine
0.06 0.14 0.18 0.36 484 1,349 1.00 1.00

80% TAP þ 70%
quarantine þ 50%
pre-vaccination

0.02 0.03 0.06 0.17 91 275 1.00 1.00
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